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Quantized Frame Decompositions

M. Craizer, D. A. Fonini, Jr., and E. A. B. da Silva

Abstract. In this paper, we consider a certain type of decomposition
of vectors in frames, in which the coefficients are already quantized and
thus are ready for coding. This decomposition is a generalization for vec-
tors of the usual binary expansion of real numbers, and the algorithm for
obtaining it can be seen as a quantized version of the matching pursuits al-
gorithm. We show that, in several cases, applying this algorithm is better
than first finding the frame coefficients and then quantizing them.

§1. Introduction

Let .F = {el, e 2 ,..., ep} be a collection of unit vectors generating RN. This

means that every x E RN can be expressed as

p
x = Zaiei.

i=1

The vectors {ej, e2 ,... , ep} may or may not be linearly independent. In the
case that they are linearly dependent, the set F is called a frame or an over-
complete basis. In this paper, we shall call F a frame even if the vectors
{el, e2 ,.. . , ep} are linearly independent. More on frame expansions can be
found in [7].

Let q = 2p and, for 1 < i < p, let vi = ej and vi+p = -ei. We shall call
the set D {V=, . . . , Vq} a codebook or a dictionary. Let a be a real number
in the interval (0, 1). A representation of a vector x E RN in the form

00Xg = E oai~ki

i=0

with vkj E D, will be called an (a, V)-expansion. When the dictionary being
used is clear by the context, we shall call this representation simply an a-
expansion. Observe that the (a, D)-expansion of a vector x can be seen as a
decomposition of x in the frame F.
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Define the nth residual of a vector x by

r(x) ={ ro(x) =x, ., if n=0,

X - •-•i=o a'Vk, if n > 0.

Given x, the sequence (k0 , k1,...) can be obtained recursively by the relation

(rn(x),Vkj) = max (rn(x),vk).
k

We shall call this algorithm the nearest point algorithm and it may be seen as
a quantized version of the matching pursuits algorithm [4].

Denote by A,, = A,,(D) the set of points of RN that can be represented
as an a-expansion of vectors that belong to D, and by AO = A' (D) the subset
of A,(D) whose a-expansion can be obtained by the nearest point algorithm.
In order for the a-expansion or the nearest point algorithm to be a suitable
scheme for quantized frame decomposition, we must choose a such that Ac
or A°, respectively, contain an open set of IRN. In Section 2, we shall give
conditions on a that guarantee these facts.

At this point, a question arises: is it worthwhile to decompose a vector
in a frame using the a-expansion, or is it better to decompose it in the usual
way and then quantize the coefficients in a second step (see [6,9])? We shall
answer this question by considering the rate-distortion characteristic of each
scheme. We show in Section 3 that the first scheme is better, in an asymptotic
sense, if and only if we can choose a satisfying

log 2 (2p)
log2  <

We shall also give examples where this inequality holds.
Take x = (xl,... ,Xu) E RN. We can quantize x by taking the n-term

binary representation of each coordinate xi. This procedure can be considered
as an n-term a-expansion using the dictionary BN whose code vectors are
the corners of the hypercube [-1, 1]N and a = 1. So the a-expansion in an
arbitrary dictionary D can be considered as a generalization of the usual binary
expansion for vectors. The relevant question is whether there is any dictionary
D that is better in some sense than BN. It is worthy of note that some special
dictionaries, related to the sphere packing problem [2], have already been used
for image coding, yielding better results than BN ([3,8]).

§2. Theory of Alpha-Expansions

General representation

Let D = {v.,... , Vq} be a collection of vectors that generates all RNN, and

0 <a• < 1 be a parameter. Denote by A, the set of points x E RN that can
be written as

00

Oa Vkj
i=0
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with Vkj C D. Let Pa be the convex hull of the vectors {- 1
-aVk}k=1,...,q.

Observe that any x E A,, is a linear combination of the vectors {Vk}k=1,.,q
with coefficients whose sum is not larger than 1 and therefore A, C P".

Define the contracting maps fk = fk,a by fk(x) = ax + Vk for k E
{1,..., q}. We observe that fk is a homotety of center v--vk, which implies
that fk(P,) C P,. Therefore the set {f,, ... , fq} forms an iterated function
system (IFS) [1] on Pa. It is not difficult to show that the attractor of this
system is exactly A,, i.e.,

00

A_ = f F (Pa),
n=O

where F = F, is the function of sets defined by

F(A) = fl(A) U... U fq(A).

Example 1. Let D = BN, the dictionary whose code vectors are the corners
of the hypercube [-1, 1]N. For any a > 1, we have that F(Pa) = Pa and2'
therefore Ac = Pa.

We are interested in finding the smallest value of a such that Aa contains
an open set. In the above example, this occurs for a = 1, when in fact2'
A, = Pa.

Remark 1. One can show that for any dictionary, if a > N• , then A, = Pa,
which shows that the smallest value of a such that A, contains an open set
is smaller than N

N+V

In Example 1, the smallest a such that A, contains an open set satisfies
also A, = Pa. But this is not a general fact, as the following example shows.

Example 2. Let D) = B3 U {(1, 0, 0), (-1, 0, 0)}, where B3 is the dictionary
whose code vectors are the corners of the cube [-1, 1]3. If we consider a =

,then [-1,1] C Ac, but A, is strictly contained in Pa. This fact can
be seen by observing that the centroid of the face of Pa whose vertices are
(1, 0, 0), -!3(1, 1, 1) and -3(1, 1, -1) are not contained in F(Pa), which implies
that F(Pa) 5 P,, and thus A, : Pa.

In all examples that we have considered, we observe that if A, contains
an open set of RN, then it also contains the convex hull of some of the points
of the dictionary. We don't know whether this is always true, so we formulate
it as a question:

Question 1. If, for some 0 < a < 1, Aa(7D) contains an open set of RN, then
will a subdictionary E), C E) always exist such that A(a(D) Q P•(V1)?



156 M. Craizer, D. A. Fonini, and E. A. B. da Silva

Basic algorithm

How do we obtain the sequence of indexes (k0 , k1,...) that represent a given
vector x E A,? In general, the representation of a vector x is not unique. In

order to define which of the sequences representing the vector x we shall look

for, we consider a choice function K : F(P 0 ) -+ {1,... ,q} with the following
properties:

1) fk(Vk) C Vk, for any k E {1,... ,q}, where Vk = K-'(k).
2) If K(x) = k, then x E fk(Po), for any x E F(P,,).

It can be shown that such a function always exists. This choice function K
determines a function g : F(P0 ) - P0 given by

g(X) = X - VK(X)
a

It is not difficult to show that

A. = n•lg 0 (P.).

This implies that if x E A,, then g'(x) E A,, for any i > 0.
By the last paragraph, given x C A,, we can choose the sequence

(ko, k 1,...) by the relation ki = K(g?(x)). We shall call this the basic al-
gorithm. This algorithm always works, but it is computationally expensive.

So we propose another algorithm, computationally feasible, called the nearest
point algorithm.

Nearest point algorithm

The nearest point algorithm is used for obtaining a sequence (ko, k,,...) repre-

senting a vector x C A,. It can be seen as a quantized version of the matching
pursuits algorithm.

It is determined by the choice function K0 defined by the property that

Ko(x) is the code vector in D nearest to x. We denote by Vok the set Ko 1 (k)
and by go the function

;X - VKo(X)
go (X) =

This choice function certainly satisfies Property 1 above, but Property 2 can

fail. It is not difficult to see that Property 2 holds if and only if VOk C fk(PC),
for every k E {1,...,q}.

Let Ah(D) = =l0go'Y(P 0 ). We have that A°(D) C A,7(D), but they are

not necessarily equal. One can verify that A°7(D) = A(T(D) if and only if the
choice function K0 satisfies Property 2 above.

Example 3. Let D = {(1, 0), (0, 1), (-1, 0)}. For any 0 < a < 1, the segment
(0, 6), 0 < 6 < 1 is not contained in f 2 (P0 ). Therefore go(0, 6 ) is not in PC,
which implies that this segment is not in A°(D). On the other hand, if a > ý,
Ac,(D) = P0 .

We have also observed in examples that if A°(7) contains an open set of
RN then it must contain the convex hull of some code vectors. This prompts
the following question:
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Question 2. If, for some 0 < a < 1, A'(7) contains an open set of IRN, then
will there be a subdictionary D1 C D such that A°(D) Q P•(E),)?

§3. Comparison between Alpha-Expansions and the Decompose-
Quantize Procedure

In this section we shall compare the a-expansion in a frame with the 2-
step procedure of first decomposing in the frame and then quantizing the
coefficients so obtained in a second step. We shall do this by comparing the
rate-distortion functions of each scheme.

Let .F = {ei, e2,. .. , ep} be a frame in ]RN, and take x E RN with llxii <
M. We shall assume that the coefficients (a,, a2,..., an) of the decomposition
x in the frame F satisfy jail< C1 M, for some constant C1 that depends only
on 97. We shall consider here the quantization of these coefficients by binary
expansions. If each coefficient is represented by n bits, the total number of
bits used is R = np, and the maximum square error per coefficient is given

by [CIM (½)'-1 ." If we multiply this by p, we obtain the total maximum

square distortion D. Therefore, we can write the rate-distortion relation

R = p log 2 (4C12M
2 )

2 D ) "

Let us consider now the a-expansion procedure. If we approximate x E
A,, lixli < M, by its n-term a-expansion (VioVj,, ... ,vi__l), the maximum

square distortion is given by D = [C2Man]2 , where C 2 is a constant that
depends only on F. The number of bits necessary to code this sequence is
R = n log 2 (2p), and thus we have the rate-distortion relation

"R - 1og 2 (
2p) 1) (C2D

We conclude that asymptotically, the a-expansion is better than the
decompose-quantize procedure if we can choose a such that Aa contains an
open set and

log 2 (2p)

Example 4. Let F = ), (1,0), and take a Then
2' 2 2f2A, = Pa (which in this case is a hexagon) and

log 2 (
2 p)
1 = log 2 6 < 3,

log 2 ,

which implies that in this case the a-expansion is better than the decompose-
quantize procedure.
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Fig. 1. The 8-dimensional hypercube as codebook.

Remark 2. If for a given frame F, Ao contains an open set, then this remains
true for any other frame FT1 obtained from T by adding some more vectors.
Hence, even if relation (1) does not hold for F, it will hold for highly redundant
frames F1 containing F.

Remark 3. By Remark 1, a > N- implies that A_ = Pa. Therefore, if we
consider frames satisfying

1og 2 (2p)< logN + 1

the a-expansion scheme will be better than the decompose-quantize procedure.

Experimental results

In order to directly compare our method (the nearest point algorithm) with
some established results, we look at some examples presented in [6] (3.4.2, pp.
41-45). To this end, we used a similar source and the same codebook.

A zero-mean gaussian AR source with correlation coefficient p = 0.9 was
used to provide the data points. Vectors were formed by blocks of N samples.
Rate was measured as the first order entropy of the index stream produced
by the algorithm - similarly to [6].

In Fig. 1, we used the vertices of the 8-dimensional hypercube as the
codebook. In this case, a was set to 0.501 and vk = 1.4142 (that is -08:).

As can be seen from this data, our method does give some performance
benefits on low bit-rates.

Although our algorithm can be very expensive in terms of computational
effort, so are other greedy algorithms like matching pursuits. But there are
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some well structured codebooks which lend themselves to fast calculation of
the steps involved - like the one used in this example.

§4. Conclusions

In this paper we have further developed the theory of a-expansions and applied
it in the context of quantized frame expansions.

We have shown that a-expansions perform asymptotically better, in a
rate-distortion sense, than the decompose-quantize method. In addition, pre-
liminary experimental results indicate that this method also compares favor-
ably to the decompose-quantize method in practical cases. This was verified
by direct comparison between our method and quantized matching pursuits
from [6].
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